
Sample App Report
Prepared for: Acme Co.
June 29, 2007

TABLE OF CONTENTS

1. Executive Summary
2. Score Card
3. Detailed Report
4. Action Plan

EXECUTIVE SUMMARY

Acme Co. hired an offshore development firm out of South America to develop their new
marketplace app for iOS. The development firm has been working on the app for a little
over one year and Acme Co. is beginning to have concerns regarding the app’s
development progress.

During the discovery meeting, Acme Co. voiced concern over how the agency allows the
stakeholders to review the app. To date, no version of the app has been made available to
the stakeholders at Acme Co. and the only insight into its progress is through controlled
demoes over a video conference call. It’s starting to feel like the app is a sort of smoke and
mirror show.

After a thorough review, it is safe to say that the code base isn’t a total smoke and mirror
show. There does seem to be a functioning data and networking layer, although there are
no references to a live server instance anywhere. The assumption is that the controlled
demoes are likely due to the backend being either incomplete, or not available on a live
server instance. It seems the mobile devs have been using networking stubs to replicate
the server environment on their local computers and likely for the demoes as well.

However, the software development process and the app itself are not without issues.
Please find the score card and explanations below.

SCORE CARD

Code Quality

Performance

Documentation

Analytics

Testing & Automation

UI/UX Design

Quality Assurance

Project Management

0

2

4

6

8

10

DETAILED REPORT

Code Quality
Does the app follow best practices and leverage established architectural design
principles?
Score: 8 out of 10

The code base does a decent job of compartmentalizing code and makes good use of
extensions, inheritance, and composition to avoid duplicating code throughout the
project. However, the code base also makes heavy use of RxSwift, a 3rd party framework
for performing functional reactive programming. This approach has its benefits, however
the learning curve can be quite substantial and mistakes can cause serious memory leaks
that are difficult to track for inexperienced developers. If Acme Co. plans to eventually
take the development in-house, this is something to take into consideration. In addition,
the use of 3rd party frameworks is not without risk, as you are reliant on the maintainers of
the 3rd party code to always be up to date with the latest OS releases. The Rx community
is well-established and updates are published at a regular cadence, however Acme Co.
should be aware of all 3rd party dependencies added to the app and should weigh the
risk of each one independently. Concerns should be brought to the development team as
quickly as possible to avoid time-consuming refactors.

It seems all calculations regarding marketplace sales are figured within the app’s code
base. I recommend moving these off to the server so that this behavior can be more
closely controlled. When you’re ready to release an Android version of the app, with the

current architecture, you’ll be required to duplicate this calculation logic in both apps and
keep them in sync. Worse yet, if you decide to change the transaction fees for your
service, you’ll have to coordinate updates to both apps at the same time and ensure
everyone using the app are all upgraded to the latest version. Moving this responsibility to
the server ensures every version of the app is always charging the correct amounts to your
user base.

Another area of concern is the lack of localization and accessibility best practices. If Acme
Co. intends to release this app with multi-language support, or if they wish to support
vision or hearing impaired customers, then the development team should begin
refactoring their code to include these features as soon as possible. The iOS operating
system has built-in support for localization and accessibility, but the developer has to
implement the APIs in order to get the best experience for each use case.

Performance
Does the app leverage crash reporting tools, have efficient load times, properly handle
errors, and is it free from memory leaks?
Score: 8 out of 10

There are no memory leaks and the app loads in a reasonable amount of time. However,
per comments above, the use of RxSwift could lead to difficult-to-detect memory issues if
not used properly.

The developers did a good job of subclassing the system error classes, however stopped
short of providing any meaningful failure reasons in their subclasses. So, instead of having

a multi-lingual supported error message that can be displayed to the end user, it’s just an
empty string. Perhaps the development team is waiting on Acme Co. to provide
meaningful content to supplement the errors, however displaying an empty string can
make it difficult to determine where content messages are missing. Rather, a deliberate
placeholder string, something easily searchable within the code base, can help organize
what errors have been accounted for and which ones still require content.

There doesn’t seem to be any crash reporting implemented at this point, despite included
dependencies for Google’s Firebase SDK. Perhaps an oversight, but the crash reporting
features in Firebase were never turned on. It is recommended that some level of crash and
error reporting be added to the app so that defects can be addressed as soon as possible
after discovery.

Documentation
Does the code base contain complete and accurate documentation?
Score: 0 out of 10

The code base is completely void of any documentation. There are only a handful of
comments within the code base itself and nothing in the code repository that would give
a new developer any idea about the app and what it does.

At the very least, the developers should add DocC style comments to each of their
classes, extensions, and functions so that simple documentation can be auto-generated
from the code itself. There should also be a default README.md file in the repository that

gives an overview of the app, architectures and coding conventions used, how to build
and run the project, and who to contact if anything goes wrong.

Analytics
Does the app follow Apple & Google’s guidelines for user privacy, track meaningful
metrics, and abstract any 3rd party dependencies?
Score: 0 out of 10

There has been no effort to build in any form of analytics or behavior tracking within the
app. While it might seem more important to get an app up and running as quickly as
possible, stakeholders should give serious thought as to how they will determine the
app’s success and how that success will be measured.

Efforts to evaluate user behavior should be built in to the code base foundations rather
than sprinkled in as an afterthought post the version 1.0 release. While the offshore team
could help to make suggestions on the kinds of metrics to track, this should be coming
from the stakeholders at Acme Co. Recommendations available in the Action Plan at the
end of this report.

Testing & Automation
Is the code base adequately tested and are there mechanisms in place to automate
testing and deployment?
Score: 1 out of 10

The code base presently only contains a single unit test that checks to see that all
expected image and color assets exist, and nothing else. There are no UI flow tests, and
no meaningful unit tests in the app.

There is no automation in the repository, which is unsurprising considering the
development agency hasn’t provided any regular builds to the stakeholders directly.
However, as Acme Co. transitions to a more formal development process, automating
builds and app testing will be important for keeping things running smoothly and
efficiently. See detailed recommendations in the Action Plan at the end of this report.

UI/UX Design
Does the design follow well-established patterns, use controls appropriately for each
platform, and support accessibility APIs?
Score: 4 out of 10

App taxonomy is somewhat disjointed. This is likely the reason for the slide out draw
navigation in lieu of a more traditional bottom tab navigation. The problem with a slide
out drawer navigation is that it interferes with the system-level built-in navigational
shortcuts (like swiping from left to right to go back to the previous screen), as the slide out
navigation drawer intercepts the touch gesture. This can be jarring for users accustomed
to standard behavior in nearly all other iOS apps. The other issue with a slide-out
navigation drawer is that it leads to lazy design decisions. Instead of weighing the choices
of where to place access to certain screens against UX testing results, it’s can be easier to

just throw it into a scrolling navigation drawer as you don’t have to consider the space
constraints of bottom tab navigation.

The app design also lacks in the basic fundamentals; contrast, repetition, alignment, and
proximity. Everything is on a white or dark green background with a solid green for any
accents and buttons. All text in the app is the same size and color, so it’s very difficult to
determine a hierarchy of design information. None of the content appears to be
organized in any intuitive way, and trying to perform specific tasks within the app is a bit
like swimming up stream. The app should be designed around specific outcomes you
expect the user to perform, and those outcomes should be tracked with measurable
metrics as mentioned in the Analytics section.

The app design also doesn’t follow Apple’s Human Interface Guidelines (HIG) and opts for
building complete custom controls rather than use the built-in ones. Of course there is a
time and place for custom controls, namely when the built-in controls don’t provide the
control needed for a particular outcome, but there are no cases in the design of this app
that would merit the creation of custom controls. Opting to build your own controls means
losing out on the built-in accessibility support and standard behaviors that users have
come to expect when using an iOS device.

Additionally, there is no support for switching between light & dark mode or for
landscape vs portrait orientation. This may be a conscious choice by Acme Co. or an
attempt to save time and budget by limiting development to a single color scheme and
orientation, however steps should be taken in the code base now to leverage the system
appearance APIs so that support for dark mode and landscape orientation can be easily
implemented once design has been approved to support it.

Quality Assurance
Are defects tracked and tickets well-written, is the QA workflow well-defined, are and the
acceptance criteria for each feature easily understandable?
Score: 0 out of 10

Either the development agency employs their own QA team behind the scenes, or there is
no formal QA process in play. Acme Co. really should consider injecting themselves into a
formal QA role and request regular builds for testing. This will not only provide more
visibility and transparency into the development process, but also help to address
potential issues sooner as stakeholders won’t be surprised by certain unexpected
behaviors.

To do this correctly will require implementing some new tools and workflows and will
demand the offshore team include Acme Co. more directly in their weekly interactions. A
recommendation for managing the QA process included in the Action Plan.

Project Management
Is the scope of each sprint planned and communicated to the team, are user stories and
tasks well-written, are technical requirements understood by both the dev team and
stakeholders, and is the code change management system visible to the team and are
code changes easily mapped back to the tickets in each sprint?
Score: 1 out of 10

Outside bi-monthly meetings between the offshore project manager and the
stakeholders, there doesn’t appear to be much of a formal project management plan in
place for the app’s development. Considering the stakeholders are all bilingual and fluent
in Spanish, there should be no major cultural or language barrier issues to contend with. It
is unknown as to why Acme Co. has left much of the project management tasks to the
offshore development agency, but going forward, I recommend placing your own project
manager, perhaps in a “Product Owner” role, and participate more directly in the offshore
agency’s planning and review activities.

ACTION PLAN

I. Crash reporting — have the development team follow the instructions here (https://
firebase.google.com/docs/crashlytics/get-started?platform=ios) for setting up crash
reporting in the app. Once crash reporting is set, you should have someone from your
team added to the project dashboard and set up to receive notifications when crashes
occur. You should have a triage plan in place to track crash issues, work them into
development sprints, and release the fixes into production as quickly as possible to
avoid a diminished user experience.

II. Description/errorDescription strings — the development team should create a custom
ErrorType enum inside the AcmeError class and switch over that to determine the
appropriate string to return. This will make it easier to group the errors by domain and
to reason about error types instead of creating static instances of each error type.

They should also take advantage of CustomNSError class to allow the passing of
other data within the error class, which can be helpful in determining errors that could
be recoverable and allow the code to self-correct when appropriate.

https://firebase.google.com/docs/crashlytics/get-started?platform=ios
https://firebase.google.com/docs/crashlytics/get-started?platform=ios

	 //AcmeError.swift

	 //Before

	 final class AcmeError: NSObject, LocalizedError {

	 	 let message: String

	 	 init(_ message: String) {

	 	 	 self.message = message

	 	 	 self.init()

	 	 }

	 	 override var description: String {

	 	 	 return ””

	 	 }

	 	 override var errorDescription: String {

	 	 	 return ””

	 	 }

	 	 static let unhandled = AcmeError(“Unknown error”)

	 	 static let parsing = AcmeError(“Parsing error”)

	 }

	 //After

	 final class AcmeError: NSObject, CustomNSError,

LocalizedError {

	 	 enum ErrorType: String {

	 	 	 case unhandled

	 	 	 case parsing

	 	 	

	 	 	 static let defaultCode = 0

	 	 	 var code: Int {

	 	 	 	 switch self {

	 	 	 	 case .default: return Self.defaultCode

	 	 	 	 case .unhandled: return 100

	 	 	 	 case .parsing: return 101

	 	 	 	 }

	 	 	 }

	 	 }

	 	 static var errorDomain: String {

	 	 	 “AcmeError.error"

	 	 }

	 	 let errorType: ErrorType

	 	 init(_ errorType: ErrorType) {

	 	 	 self.errorType = errorType

	 	 }

 		 var errorCode: Int {

 		 switch self.errorType {

	 	 	 //could add logic here to determine if the

error should be end-user presentable or held internally

 		 default:

 		 return self.errorType.code

 		 }

 		 }

 		

	 	 var errorUserInfo: [String: Any] {

	 	 	 //this user info object can be used to pass

helpful data about the error or process occurring during

the error to help the code recover from the issue

 		 var retval = self.localizedErrorUserInfo

	 	 	 if let error = self.error {

 		 retval[NSUnderlyingErrorKey] = error

 		 }

 		 return retval

 		 }

	 }

	 var description: String {

	 	 switch self.errorType {

	 	 	 case .unhandled:

	 	 	 	 return String(localized: “Unhandled

error”

	 	 	 case .parsing:

	 	 	 	 return String(localized: “Parsing error”

	 	 }

	 }

	 var errorDescription: String? {

	 	 switch self.errorType {

	 	 case .unhandled:

	 	 	 return String(localized: “A user-facing

message about the error that occurred”)

	 	 }

	 	 case .parsing:

	 	 	 return String(localized: “A user-facing

message about the error that occurred”)

	 	 }

	 }

III. Localized content strings and string catalogs — text strings within the app that are
displayed to the user should leverage the new String(localized:) methods and
String Catalogs to manage the various languages that the app supports. The error
messaging recommendations in the previous point demonstrate their use in code.
Developers can follow the documentation from Apple for more details here: https://
developer.apple.com/documentation/xcode/localizing-and-varying-text-with-a-string-
catalog

IV. DocC comments & README.md file — the project git repository should contain a
README.md file that explains the project architecture, how to build/run the project,
and who to contact with any issues. It should be reviewed on a regular schedule to
make sure it stays up to date. The rest of the code should include DocC style
comments for developer-facing API explanations for how the code works. These style
comments can be set up to auto-generate an easy-to-read document package
highlighting the code base and how it works. More information can be found in
Apple’s developer documentation here: https://developer.apple.com/
documentation/xcode/documenting-apps-frameworks-and-packages

V. Analytics wrapper for Google Analytics — the development team should create a
separate layer within the app for handling metrics for the flows Acme decides it wants
to track. This wrapper should be generic enough to handle custom message types
related to the metrics and then forward those tracking points to Google Analytics.
Creating this kind of wrapper around the analytics tracking service will make it easier
to change to a different analytics service in the future, should Acme want to track their
metrics data in a service other than Google Analytics.

https://developer.apple.com/documentation/xcode/localizing-and-varying-text-with-a-string-catalog
https://developer.apple.com/documentation/xcode/localizing-and-varying-text-with-a-string-catalog
https://developer.apple.com/documentation/xcode/localizing-and-varying-text-with-a-string-catalog
https://developer.apple.com/documentation/xcode/documenting-apps-frameworks-and-packages
https://developer.apple.com/documentation/xcode/documenting-apps-frameworks-and-packages
https://developer.apple.com/documentation/xcode/documenting-apps-frameworks-and-packages

VI. Analytics tracking/suggested metrics — considering the nature of the app, having a
high number of users with items for sale in the market place will be important for
attracting business. If there’s no one putting items up for sale, then no one will stick
around long enough for the idea to take off. Growth should be the primary metric you
want to track, and measuring that growth against the effectiveness of your marketing
campaigns will be important in determining the success of your efforts. Start by
focusing on your growth strategies and make sure the metrics for measuring those
strategies are baked into the code from the start.

VII. Increased unit testing/UI testing, Fastlane scripts & GitHub actions for automated
builds to TestFlight — if moving the payment calculations to the server is not possible
at the moment, then I recommend adding unit tests to the app to ensure these
formulas remain correct. If a code change accidentally removes your service fee, for
example, then you’ve lost important revenue and will continue to lose it until a patch is
released.

The only other logic factor you might consider for unit testing could be the mapping
features showing items for sale within a particular radius. Although the built-in
mapping APIs have methods for limiting map points within a radius, you’ll want to
make sure your local database fetching is accurately filtering out the results by
latitude/longitude for the coordinates being stored. Regardless of whether the
development team chooses to implement automated testing or not, they should
definitely implement actions in the repository that try to build the project before it
gets merged into the primary branch. This will ensure no one accidentally commits
code that breaks the build. From there, you can add actions for deploying the build to
TestFlight for internal testing, and even add web hooks to pull in feature and issue

tickets from your tracking system to let everyone know exactly what is available for
testing in the current build. I recommend the development team check out Fastlane
(https://fastlane.tools/) for building out these automation scripts, and GitHub Actions
(https://github.com/features/actions) for triggering tests and builds whenever code is
committed or merged into the primary branch.

VIII. UI/UX design — I recommend the designer reconsider the continuity from screen to
screen. They should decide on a standard margin/spacing around all items and the
content from the edges of the screen. They should also define font styles for all the
standard sizes of content through out the app (e.g. title, subtitle, caption, body, etc).
The color scheme is also quite jarring. If the designer isn’t sure how to mix colors in a
way to elevate the content and not distract from it, you may want to hire another
designer to create a new treatment. The attached screen layouts are just a hint at how
to improve some of the content organization issues, but a complete redesign of the
app is out of scope for this report.

https://fastlane.tools/
https://github.com/features/actions

Navigation — Current State

Navigation — Recommendations

As mentioned in the report section, the
drawer style slide-out navigation menu
makes it difficult for users to find exactly
what they’re looking for. Furthermore, the
navigation menu taxonomy itself is overly
segmented. For example, there’s no
reason to separate “Items for sale” and
“My Items” when what you’re really
referring to is two sides of the same coin.
It’s the marketplace. Consolidate items in
the menu and move them to a bottom tab-
bar instead. Likewise, “Notifications” and
“Messages” are really just an inbox of
messages, either from Acme or from other
users. Move them all into the “Messages”
tab and allow the user to filter/toggle the
display based on what they’re interested
in.

“Favorites” could just be a filter setting on
the “Marketplace” tab, and “Home” is
really unnecessary. At present “Home” is
just a map view of items for sale nearby.
But, honestly, when users go online to

shop for something, they’re not often thinking about “What can I buy that’s near me”,
they’re after a particular item. They can filter their marketplace search results by
distance, so the map view is really just wasted space. So, remove the “Home” item
from navigation and just drop the user into the “Marketplace” tab when they start the
app.

As for design, you need your designer to consider the hierarchy of information and
use typeface treatments to show what’s most important. The suggested layout above
is by no means a recommended finished design as a complete redesign is out of
scope for this type of report, but this should highlight some of the differences
between the current “Items for Sale” section and this reimagined “Marketplace” tab.

IX. QA testing, defect tracking, and workflows for software lifecycle management — when
it comes to testing features of an app, the stakeholders at Acme need to be extremely
thorough in their description of the feature and what the criteria for acceptance is.
These feature descriptions are traditionally referred to as “user stories” and QA will
refer to the acceptance criteria outlined in the user story to validate that the software
does what it should. Considering there isn’t any formal QA happening on the Acme
side of things, and assuming the offshore team is performing this work with their
internal QA department, I recommend Acme assign a few of their own people to test
the app as soon as possible.

When it comes to tracking the features and defects, since you’re already using GitHub,
it would probably be easiest to just adopt their built-in project tracking features. Once
you’re comfortable with the development lifecycle process, you can then determine if
there are other tools out there that might be a better fit for your organization. GitHub

project tracking information can be found here (https://docs.github.com/en/issues/
planning-and-tracking-with-projects).

Finally, regarding the software development lifecycle, you need to work with the
design & development team on a regular schedule. At the start of each development
cycle, you should determine what features to prioritize and try to limit turn around
time to within 1~2 weeks. Write detailed tickets in the project tracking system that
explain how the feature should work and what constitutes a “completed” state. Let the
developers worry about the implementation details, and don’t rely on designs as a
crutch. Be as explicit in the written descriptions as possible. As developers complete
their tickets, new builds should be deployed as each ticket is merged into the primary
branch. QA can then use these builds to test that the features work as expected. At the
end of each 1~2 week time block, reevaluate the remaining tasks and see if the
priorities still hold true. Check to see if any defects need to be addressed before
moving on. Establish regular communication with the dev and QA team leads to make
sure there are no bottlenecks to the development flow.

X. Project Management — at the very least, Acme should assign an internal team member
to be the “Product Owner” and primary point of contact for all decisions about the
app. The Product Owner should participate in regular planning meetings with the
offshore development team to ensure features are being prioritized appropriately and
that any roadblocks that would cause delay are remedied as quickly as possible.

https://docs.github.com/en/issues/planning-and-tracking-with-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects

	Sample App Report
	Table of Contents
	EXECUTIVE SUMMARY
	Score Card
	Detailed Report
	Action plan

